(Following Paper ID a	and Roll No.	to be	fille	d in	yo	ur /	Ans	wer	Bo	ok)
PAPER ID: 0109	Roll No.	8810	81.18	110	qn					

B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2012-13 DIGITAL LOGIC DESIGN

Time: 3 Hours

Total Marks: 100

Note:—(1) Attempt all questions.

- (2) All questions carry equal marks.
- Attempt any TWO parts of the following:
 - What do you mean by sign magnitude (a) (i) representation? Discuss. Tro A s miteoCl
 - Explain the rules of 2's complement addition and (ii)subtraction with suitable examples.
 - (b) (i) Simplify the following Boolean equation:

$$Y(A, B, C, D) = \overline{A} \overline{B} C \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D}$$

(ii) Minimize the following logic function using was an in the following Bod enworld of insmalged (a)

$$Y(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 0)$$

and implement it using logic gates.

(c) What is BCD code? What are the rules for BCD addition? Explain with suitable example.

input, I, and I and one output Z. Initially both inputs

- 2. Attempt any TWO parts of the following: (10×2=20)
 - (a) (i) Design a combinational logic circuit with three input variables that will produce logic 1 output when more than one input variables are logic 0.
 - (ii) Draw logic diagram of half subtractor.
 - (b) Draw and explain the carry look ahead adder.
 - (c) Implement the following function using a 4:1 multiplexer:

 $f(A, B, C, D) = \Sigma m(2, 3, 5, 7, 8, 9, 12, 13, 14, 15).$

- 3. Attempt any TWO parts of the following: (10×2=20)
 - (a) Explain J-K flip flop with preset and clear. Also draw the logic circuit of SR flip flop using T flip flop.
 - (b) Design a divide by 7 counter with suitable diagram.
 - (c) Design a 4 bit binary up down ripple counter. Also show its clock diagram.
- 4. Attempt any TWO parts of the following: (10×2=20)
 - (a) Explain PLA with the help of block diagram.
 - (b) (i) Write short on EPROM.
 - (ii) Differentiate static RAM and dynamic RAM.
 - (c) Implement the following Boolean expressions using PROM:
 - (i) F1 (A, B, C) = Σ m(0, 2, 4, 7)
 - (ii) F2 (A, B, C) = $\Sigma m(1, 3, 5, 7)$
- 5. Attempt any TWO parts of the following: (10×2=20)
 - (a) Design an asynchronous sequential circuit with two input, I₁ and I₂ and one output Z. Initially, both inputs

- are equal to zero. When I_1 or I_2 becomes 1, Z becomes 1. When the second input goes to 1, the output changes from 1 to 0. The output stays at 0 until the circuit goes back to (0, 0).
- (b) Draw an ASM chart for a modulo-4 UP/DOWN counter having the state transition table as given below:

Present State	Next State					
	X = 0	X = 1				
0 0	0 1	11				
0 1	1 0	0 0				
1 0	11.	0 1				
11	0 0	1 0				

(c) What is the significance of state assignment? List the different techniques used for state assignment and discuss any one of them.

3

RESTORED HER