concentration in the p-type material, N_d is the donor concentration in the n-type material and q is the electronic charge.

- **8.** Derive an expression for diode current in an ideal p-n junction diode.
- 9. What is Hall effect? Derive the relation between Hall voltage and carrier concentration.

Section - C

Note: Attempt any two questions from this section $(2 \times 15 = 30)$

- 10. Write the special features of MESFET. Explain the working of normally-off and normally-on MESFETS with its characteristics.
- 11. a) Derive the expression for the equilibrium carrier concentration for holes using Fermi Dirac distribution function.
 - b) A Si doped with 10¹⁷ per cm³ Boron atoms has fermi level 0.36 eV above valence band at 300K. What is the density of states in valence band?
- 12. Write short notes on:
 - a) LED materials.
 - b) GUNN Diode.
 - c) IMPATT Diode.

Printed Pages: 4

(Following Paper I	D and Roll No. Answer Books	be	filled	in	your
Paper ID: 2012360	Roll No.		BAW.	П	

B.TECH

Regular theory Examination(Odd Sem - III), 2016-17

FUNDAMENTAL OF ELECTRONIC DEVICES

Time: 3 Hours

Max. Marks: 100

Section - A

- 1 Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(10\times2=20)$
 - a) Classify semiconductors on the basis of energy band gap with the help of suitable diagram.
 - b) Calculate the density of GaAs, if the lattice constant of GaAs is 5.65 A°. The atomic weights of Ga and As are 69.7 and 74.9 g/mol, respectively.
 - c) Differentiate between phosphorescence and florescence materials with examples.
 - d) What is population inversion? Write down the difference between spontaneous emission and stimulated emission for LASER action.
 - e) Explain the V-I characteristics of photodiode. What is the significance of 3rd and 4th quadrant operation of photodiode?

- f) What is Fermi level? How does it depend on temperature?
- g) What is the physical significance of diffusion length? How is it related with mobility of the carrier?
- h) What do you mean by reverse recovery transient? State the significance of storage delay time.
- i) What are degenerate semi-conductors? Draw their energy band diagrams.
- j) Calculate the maximum packing fraction of fcc lattice.

Section - B

Note: Attempt any five questions from this section $(5\times10=50)$

- 2. a) What do you mean by mobility of a carrier? How does it depend on temperature, doping concentrations and high field? Explain.
 - b) Mobilities of electrons and holes in a sample of intrinsic germanium at room temperature are 3900 cm²/v-sec and 1900 cm²/v-sec respectively. If the electrons and hole densities are each equal to 2.5 × 10¹³ per cm³, calculate germanium resistivity and conductivity.
- 3. Discuss Transition and Diffusion capacitance in a p-n junction diode. In a p⁺ n junction reverse biased at 10V, the capacitance is 10pF. If the doping is doubled and reverse bias voltage is changed to 80V, what will be the capacitance?

(2)

- 4. a) A silicon sample is doped with 10¹⁵ donors/cm³ and has a hole life time of 0.5 μsec. Assuming all the donors to be ionized, determine:
 - i) The photo generation rate, which will produce 4×10^4 excess EHP in steady state.
 - ii) The sample resistivity before and after illumination.
 - iii) The percentage of conductivity due to minority carriers.

Assume
$$\mu_n = 1200 \text{ cm}^2/\text{Vs}$$
, $\mu_p = 400 \text{ cm}^2/\text{V-s}$, $T = 300 \text{ K}$.

- b) What do you mean by drift and diffusion of carriers? Find total current density generated due to both of these transport mechanisms of carriers.
- 5. Using suitable diagrams, describe the principle and operation of a Tunnel diode. Also discuss its V-I characteristics.
- 6. Draw and explain the hole and electron flow in a p-n-p Common Base BJT. State various currents flowing across the device along with characteristics curves.
- 7. Show that the total depletion width in a p-n junction at thermal equilibrium condition can be given by

$$W = \sqrt{\frac{2\varepsilon V_0}{q} \left(\frac{1}{N_a} + \frac{1}{N_d} \right)}$$

Where ε is the permittivity of semiconductor, V_0 is the built-in potential of the junction, N_0 is the acceptor