- (a) Explain following code improving transformations with examples:
 - Local and global elimination of common sub-expressions.
 - (ii) Copy propagation and dead code elimination.
- (b) Explain following loop optimizations with examples:
 - Local and global elimination of common sub-expressions.
 - (ii) Copy propagation and dead code elimination.
- (c) Write short notes on following:
 - (i) Optimization of Basic Block.
 - (ii) Semantic Errors and its Recovery.

(Following Paper ID a	and Roll No	. to b	e fil	led i	n yo	our A	nsw	rer B	ook)
PAPER ID: 2476	Roll No.		Ц		L	,			\mathbf{L}

B. Tech.

(SEM. VI) THEORY EXAMINATION 2010-11 COMPILER DESIGN

Time: 3 Hours

Total Marks: 100

Note: Attempt all questions.

- 1. Attempt any four parts of the following: $(5\times4=20)$
 - (a) Explain the compilation with suitable block diagram. Also discuss the role of various phases of the compiler.
 - (b) Discuss the boot strapping of cross-compiler.
 - (c) Describe the task performed by following programs:
 - (i) Preprocessors
 - (ii) Assemblers
 - (iii) Loaders and Link-Editors.
 - (d) Discuss the algorithms for subset construction and computation of ε-closure.
 - (e) Show the construction of NFA for following regular expression.

(a | b)*a (a | b) (a | b)

(f) Explain how LEX tool may be used to create lexical analyser?

(a) Explain recursive-descent parsing. Consider the following

grammar:

Attempt any two parts of the following.

That generates all even length strings of a's except for the empty string. Construct a recursive-descent parser with backtracking for this grammar that tries the alternative aSa before aa. Show that the procedure for S succeeds on 2, 4, or 8 a's, but fails on 6 a's. Also give the language does your parser recognize.

Consider the following left recursive grammar and eliminate the left recursion. Also construct the predictive parsing table:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F | F$$

$$F \rightarrow a \mid b$$

Give the algorithm to construct LALR parsing table. Construct the LALR parsing table for following grammar:

$$A \rightarrow aA$$

$$A \rightarrow b$$

- Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) Consider the following grammar and give the syntax directed definitions to construct parse tree. For the input

according to your syntax directed definition:

$$E \rightarrow E * T \ T$$

$$T \rightarrow T * F \setminus F$$

Discuss types of three address statements and their implementation with examples.

expression - / 1 2 construct an annotated parse nee

Give the syntax directed translation scheme to translate the while control construct. Also translate the following program segment into three address code:

while
$$(a > b)$$

if
$$(c > d)$$

else

$$c = c + d* e;$$

- Attempt any two parts of the following:
 - (a) Describe symbol table and its entries. Also discuss various Data Structure used for symbol table.
 - (b) What is activation record? Explain its organization. Also discuss various storage-allocation strategies.
 - (c) Discuss how Access Links and Displays are used to access non-local names.

3

 $(10 \times 2 = 20)$